Knowledge Transfer in Deep Convolutional Neural Nets
نویسندگان
چکیده
Knowledge transfer is widely held to be a primary mechanism that enables humans to quickly learn new complex concepts when given only small training sets. In this paper, we apply knowledge transfer to deep convolutional neural nets, which we argue are particularly well suited for knowledge transfer. Our initial results demonstrate that components of a trained deep convolutional neural net can constructively transfer information to another such net. Furthermore, this transfer is completed in such a way that one can envision creating a net that could learn new concepts throughout its lifetime.
منابع مشابه
The Utility of Knowledge Transfer with Noisy Training Sets
Knowledge transfer has traditionally concerned itself with the transfer of relevant features. Yet, in this paper, we will highlight the importance of transferring knowledge of which features are irrelevant. When attempting to acquire a new concept from sensory data, a learner is exposed to significant volumes of extraneous data. In order to use knowledge transfer for quickly acquiring new conce...
متن کاملVery Deep Convolutional Networks for Text Classification
The dominant approach for many NLP tasks are recurrent neural networks, in particular LSTMs, and convolutional neural networks. However, these architectures are rather shallow in comparison to the deep convolutional networks which are very successful in computer vision. We present a new architecture for text processing which operates directly on the character level and uses only small convoluti...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملConvolutional deep rectifier neural nets for phone recognition
Rectifier neurons differ from standard ones only in that the sigmoid activation function is replaced by the rectifier function, max(0, x). Several recent studies suggest that rectifier units may be more suitable building units for deep nets. For example, we found that with deep rectifier networks one can attain a similar speech recognition performance than that with sigmoid nets, but without th...
متن کاملTransfer Learning with Deep Convolutional Neural Network for SAR Target Classification with Limited Labeled Data
Tremendous progress has been made in object recognition with deep convolutional neural networks (CNNs), thanks to the availability of large-scale annotated dataset. With the ability of learning highly hierarchical image feature extractors, deep CNNs are also expected to solve the Synthetic Aperture Radar (SAR) target classification problems. However, the limited labeled SAR target data becomes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal on Artificial Intelligence Tools
دوره 17 شماره
صفحات -
تاریخ انتشار 2007